Acta Crystallographica Section E

Structure Reports

Online

5-Hydroxy-4-(4-methylbenzoyl)-1,3-diphenyl-1H-pyrazole

ISSN 1600-5368

Guang-Fei Liu, ${ }^{\text {a }}$ Bang-Hua Peng, ${ }^{\text {a }}$ Lang Liu, ${ }^{\text {a }}$ Dian-Zeng Jia ${ }^{\mathrm{a} *}$ and Kai-Bei Yu ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, People's Republic of China, and ${ }^{\mathbf{b}}$ Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China

Correspondence e-mail: jdz@xju.edu.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Disorder in main residue
R factor $=0.036$
$w R$ factor $=0.096$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

The crystal structure of the title compound, $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$, contains an intramolecular hydrogen bond that links the ketone and hydroxyl groups.

Comment

Pyrazol-5-one and its derivatives are widely used as biologically active compounds, metal extractants, dyes etc. (Ono et al., 1997). The tautomeric structures of these compounds have been extensively studied (Kataeva et al., 2002; Akama et al., 1996; Katritzky et al., 1964). For 4-acyl-substituted pyrazol-5ones, two forms are stable in the solid state. These are the $\mathrm{OH}-$ form (A), stabilized by an intramolecular hydrogen bond, and the NH-form (B), stabilized by an intermolecular hydrogen bond (see scheme) (Kataeva et al., 2002). The X-ray crystal structure analysis of the title compound, (I), was undertaken in order to study its stereochemistry and crystal packing.

A

B

(I)

The present X-ray single-crystal study of compound (I) shows (Fig. 1) that it exists in the OH -tautomeric form.

Experimental

The title compound was synthesized according to the method proposed by Jensen (1959) (yield 86%, m.p. $465-466 \mathrm{~K}$). Analysis, required for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 77.95 , H 5.12 , $\mathrm{N} 7.90 \%$; found: C 77.62 , H 5.34, N 7.92%. Block-like single crystals of (I) were grown from a mixed solution of methanol and dichloromethane (1:1) by slow evaporation.

Received 11 May 2005
Accepted 28 November 2005
Online 7 December 2005

Figure 1
A view of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates a hydrogen bond. Both disorder components are shown.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \\
& M_{r}=344.39 \\
& \text { Triclinic, } P \overline{1} \\
& a=9.705(1) \AA \\
& b=10.0821(9) \AA \\
& c=10.746(1) \AA \\
& \alpha=15.284(8){ }^{\circ} \\
& \beta=102.13(1)^{\circ} \\
& \gamma=91.61(1)^{\circ} \\
& V=921.2(2) \AA^{3}
\end{aligned}
$$

$$
Z=2
$$

$D_{x}=1.278 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 28
reflections
$\theta=3.9-15.0^{\circ}$
$\theta=3.9-1.0$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.30 \times 0.28 \times 0.26 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer ω scans
Absorption correction: none
4049 measured reflections
3307 independent reflections
2233 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.009$

$$
\begin{aligned}
& \theta_{\max }=25.3^{\circ} \\
& h=0 \rightarrow 11 \\
& k=-11 \rightarrow 11 \\
& l=-12 \rightarrow 12 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: } 4.8 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.096$
$S=0.97$
3307 reflections
249 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0522 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=0.16 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.12 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.045 (4)

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

$\mathrm{O} 1-\mathrm{C} 7$	$1.3193(16)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.3142(18)$
$\mathrm{O} 2-\mathrm{C} 16$	$1.2655(17)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.3962(19)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.3369(19)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.4366(19)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.3915(16)$		
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	$110.47(11)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$103.31(13)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{N} 1$	$106.01(12)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 16$	$118.56(13)$
O1-C7-N1	$123.18(13)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 8$	$111.39(12)$
O1-C7-C8	$128.05(14)$	$\mathrm{O} 2-\mathrm{C} 16-\mathrm{C} 8$	$117.03(13)$
N1-C7-C8	$108.77(12)$		

Figure 2
A packing diagram for (I), showing the dimers. Dashed lines indicate hydrogen bonds. Both disorder components are shown.

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1O $\cdots \mathrm{O} 2$	$0.90(2)$	$1.79(1)$	$2.5394(16)$	$139(1)$
C15-H15 $^{\mathrm{H}} \mathrm{O}^{\mathrm{i}}$	0.93	2.46	$3.378(2)$	170

Symmetry codes: (i) $-x+1,-y+2,-z+1$.
The H atom on atom O 1 was located in a difference Fourier map. The $\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$ distance was restrained to 0.82 (1) \AA and the distance between atoms C 7 and H 1 O was restrained to 1.90 (1) \AA. The H atoms attached to C23 are disordered over two positions, each with 0.5 occupancy. The other H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ bond distances of 0.93 (aromatic) or $0.96 \AA$ (for the CH_{3} group), and all H atoms were refined isotropically $\left[U_{\mathrm{iso}}(\mathrm{H})=\right.$ $1.2 U_{\text {eq }}$ (parent)], except for atom H 1 O which was refined isotropically.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from the Youth Fund of Xinjiang University (grant No. QN040105).

References

Akama, Y. \& Tong, A. (1996). Microchem. J. 53, 34-41.
Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Jensen, B. S. (1959). Acta Chem. Scand. 13, 1668-1670.
Kataeva. O. N., Gubaidullin, A. T., Litvinov, I. A., Lodochnikova, O. A., Islamov, L. R., Movchan, A. I., Chmutova, G. A. (2002). J. Mol. Struct. 610, 175-179.
Katritzky, A. R. \& Maine, F. W. (1964). Tetrahedron, 20, 299-314.
Ono, S., Okazaki, K., Sakurai, M. \& Inoue, Y. (1997). J. Phys. Chem. A, 101, 3769-3775.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

